Abstract

Aimed at overcoming the low efficiency of electrical discharge machining (EDM), and taking advantage of the characteristic that most metals can burn in oxygen, a new high-efficiency process is put forward: EDM-induced ablation machining (EDM-IAM) using multi-function electrode technology. EDM-IAM injects oxygen and dielectric fluid into the processing area through a dedicated channel of a multi-function electrode. The chemical energy caused by the reaction of metal and oxygen can much improve the material removal efficiency. To study the factors affecting the efficiency of the process, the ablation machining of a titanium alloy (TC4) using a multi-function electrode was carried out; analysis of the worked surface was done with scanning electron microscopy, X-ray diffraction, and discharge waveforms. The results show that the substances of the worked surface are mainly TiO, TiO1.2, TiO2, and smaller amounts of Ti3O and other titanium oxides. Violent oxidation combustion reaction occurs during the ablation machining process. The processing efficiency of ablation machining can reach 347.7 mm3/min, which is 58.7 times that of normal EDM for the same processing conditions. The main reasons for the high material removal rate are the higher utilization rate of electric spark discharge energy, consumption of material by ablation, melting effect of combustion heat on the workpiece material, and forced chip removal effect by local explosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call