Abstract
In this study, two rows of fins from a fin-tube plate recuperator heat exchanger with two different materials, ceramic and steel, have been simulated by cfx software. First, by using experimental data that are in access, the independency from network and the confirmation of pattern authenticity have been checked. Equations from the equations of steady-state (SST) model k–ω have been used for applying turbulence terms in dominant. After network stabilization in greatest Reynolds number, the flow in the recuperator heat exchanger has been studied for two other Reynolds numbers. From the simulations, it is concluded that by increasing Reynolds number the temperature of fins' surfaces, outlet fluid temperature, and the temperature of tubes' surfaces will be increased, but totally the amount of overall heat transfer in time unit will be increased by the increase in Reynolds number. Also, it is observed that changing the material from steel to ceramic does not have that much difference for heat transfer in flow in low temperatures but the temperature of fins' surfaces for different materials and similar boundary status is different.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.