Abstract

This paper investigates the heat and mass transfer of an unsteady, MHD incompressible water-based nanofluid (Cu and TiO2) flow over a stretching sheet in a transverse magnetic field with thermal radiation Soret effects. The governing differential equations are transformed into a set of non-linear ordinary differential equations and solved using a regular perturbation technique with appropriate boundary conditions for various physical parameters. The effects of different physical parameters on the dimensionless velocity, temperature, and concentration profiles are depicted graphically and analyzed in detail. Favourable comparisons with previously published work on various exceptional cases of the problem are obtained. Finally, numerical values of the physical quantities, such as the local skin-friction coefficient, the local Nusselt number and the local Sherwood number, are presented in tabular form. Results describe that the velocity and temperature diminish with enhancing the thermal radiation. Concentration decreases with improving the chemical reaction. Both velocity and concentration are enhanced with increases of soret parameter. And also, water–based TiO2 nanofluids possess higher velocity than water-based Cu nanofluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call