Abstract

The He–McKellar–Wilkens (HMW) effect in noncommutative space has been explored through two distinct methodologies. One approach treats the neutral particle, which harbors a permanent electric dipole moment, as an unstructured entity, while the other approach considers the neutral particle as a composite system consisting of a pair of oppositely charged particles. To preserve gauge symmetry, we apply the Seiberg–Witten map. Surprisingly, both of these approaches converge on the same result. They independently confirm that, up to the first order of the noncommutative parameter (NCP), no corrections are observed in the phase of the HMW effect. Remarkably, these two approaches, although founded on fundamentally different mechanisms, yield identical conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call