Abstract

A substantial undercooling up to 250 K was produced in the IN718 superalloy melt by employing the method of molten salt denucleating, and the microstructure evolution with undercooling was investigated. Within the achieved undercooling, 0–250 K, the solidification microstructure of IN718 undergoes two grain refinements: the first grain refinement occurs in a lower range of undercooling, which results from the ripening and remelting of the primary dendrite, and at a larger range of undercooling, grain refinement attributes to solidification shrinkage stress and lattice distortion energy originating from the rapid solidification process. A ‘lamellar eutectic anomalous eutectic’ transition was observed when undercooling exceeds a critical value of ∼250 K. When undercooling is small, owing to niobium enrichment in interdendrite, the remaining liquid solidifies as eutectic (γ+Laves phase); whereas, if the undercooling achieves 250 K, the interdendrite transforms from eutectic (γ+Laves phase) to Laves phase, which results from the formation of divorced eutectic arising from the huge variance of the growth velocities of γ and Laves phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.