Abstract

Metallic glasses have received considerable attention in comparison to normal metallic materials due to their superior physical, mechanical, electrical and magnetic properties. Understanding the glass transition kinetics of metallic alloys is of great importance in order to know its thermal stability. In the present paper, kinetics of glass transition of metallic glass Co66Si12B16Fe4Mo2 is studied using thermal analysis technique, i.e. differential scanning calorimetry (DSC), by non-isothermal heating of the sample at four different heating rates. The activation energy (E) of the glass transition region is determined by two most frequently used methods, namely, Moynihan’s method and Kissinger’s equation. The fragility index, m is also calculated using Tg, which is a measure of glass forming ability of the given system. The results show that the fragility index ‘m’ of the given system falls below 16. This clearly indicates that the given system is strong liquid with excellent glass forming ability (GFA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.