Abstract

The flow over a short intake is characterised by a strong interaction with the fan, that can only be captured when the rotor blades are modelled in the numerical simulations. In this paper, we use a coupled methodology to derive indications about relevant geometric variables affecting the high-incidence operation of an ultra-high bypass ratio turbofan intake with a length-to-diameter ratio of 0.35. By reproducing the effect of the fan through a body force model, we carry out a parametric study of the influence of the contraction ratio and the scarf angle at take-off conditions for a grid of 28 different three-dimensional shapes. The analysis of the selected performance metrics distributions at three angles of attack of 16°, 24°, and 28° reveals that a contraction ratio higher than 1.20 is needed to avoid separation at high incidence. While for an attached inlet the best performance is found with a moderate scarf angle, in presence of a developed separation the distortion level reduces as the scarf decreases up to negative values. We discuss the correspondence between the distortion indexes and the flow field, highlighting the origin of the detachment for the different geometries, according to the operating condition, and analysing the fan operation in the most distorted case. Finally, we assess the influence of modelling the rotor in the simulations, showing that its suppression effect on the separation at a given incidence depends on the intake geometric features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.