Abstract
We used padlock probes to study the rate of gene specific repair of three genes, OGG1 (8-oxoguanine-DNA glycosylase-1), XPD (xeroderma pigmentosum group D), and HPRT (hypoxanthine-guanine phosphoribosyltransferase) in human lymphocytes, in relation to the repair rate of Alu repeats and total genomic DNA. Padlock probes offer highly specific detection of short target sequences by combining detection by ligation and signal amplification. In this approach only genes in sequences containing strand breaks, which become single-stranded in the tail, are available for hybridisation. Thus the total number of signals from the padlock probes per comet gives a direct measure of the amount of damage (strand-breaks) present and allows the repair process to be monitored. This method could provide insights on the organisation of genomic DNA in the comet tail. Alu repeat containing DNA was repaired rapidly in comparison with total genomic DNA, and the studied genes were generally repaired more rapidly than the Alu repeats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.