Abstract

Numerical simulations of cyclones with various vortex finder dimensions and inlet section angles were performed to study the gas shortcut flow rate. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. A prediction model of the gas shortcut flow rate was obtained based on response surface methodology by means of the statistical software program (Minitab V14). The results show that the length of the vortex finder insertion, the vortex finder diameter and the inlet section angle play an important role in influencing the gas shortcut flow rate. The gas shortcut flow rate decreases when increasing the inlet section angle, and increases when increasing the vortex finder diameter and decreasing the length of the vortex finder insertion. Compared with the effect of the length of the vortex finder insertion on the shortcut flow rate, the effect of the vortex finder diameter on the gas shortcut flow rate seems more pronounced. The effect of the vortex finder dimension on the gas shortcut flow rate is changed with the different inlet section angles, i.e., the effects of the vortex finder dimension of the conventional cyclone (the inlet section angle is 0º) on the gas shortcut flow rate is stronger than the cyclone with 30º and 45º inlet section angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call