Abstract
To study gapped phases of 4d gauge theories, we introduce the temporal gauging of ℤN 1-form symmetry in 4d quantum field theories (QFTs), thereby defining effective 3d QFTs with overset{sim }{mathbb{Z}} N × ℤN 1-form symmetry. In this way, spatial fundamental Wilson and ’t Hooft loops are simultaneously genuine line operators. Assuming a mass gap and Lorentz invariant vacuum of the 4d QFT, the overset{sim }{mathbb{Z}} N × ℤN symmetry must be spontaneously broken to an order-N subgroup H, and we can classify the 4d gapped phases by specifying H. This establishes the 1-to-1 correspondence between the two classification schemes for gapped phases of 4d gauge theories: one is the conventional Wilson-’t Hooft classification, and the other is the modern classification using the spontaneous breaking of 4d 1-form symmetry enriched with symmetry-protected topological states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.