Abstract

Abstract In proton therapy, the protons are used to destroy the cancer cells efficiently at the Bragg peak without much damage to normal cells. The protons can also produce neutrons, protons, and high-energy gamma rays through nuclear reactions with cancerous and healthy tissues as well as with beamline components. The effective observed dose in the therapy is enhanced due to the interaction of nuclear particles with cancerous tissues. Such nuclear particles can have several effects on drugs used in immunotherapy, such as immunotherapy in combination with proton therapy, which has been used to treat cancer. In the present investigations, the gamma, neutron, and protons interaction parameters of some immunotherapy drugs, such as dostarlimab, atezolizumab, ipilimumab, nivolumab, and pembrolizumab, are determined by using EpiXs, NGCal, and PSTAR software. It is found that the EBF and EABF for all selected immunotherapy drugs increase with increasing penetration depth, peaking at 100 keV. The peaking is more symmetric at a higher penetration depth of 40 mfp than at a lower one of 1 mfp. At lower energies of gamma photons, the EBF values increase exponentially, and at higher energies, they increase linearly with increasing penetration depth for all selected drugs. Mass attenuation factors are slightly higher for thermal neutrons than for fast neutrons for selected immunotherapeutic drugs, indicating that thermal neutrons more actively participate in these drugs than fast neutrons. The mass attenuation factor for both fast and thermal neutrons increases with increasing weight percentages of hydrogen and is found to be higher for thermal neutrons. This is the first study in the literature to investigate the radiation interaction parameters for immunotherapy drugs, and it is helpful in radiation therapy and dosimetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call