Abstract

The parametric analysis of an active InP-based buried waveguide is proposed to optimize the amplification of the electric field at a given operation wavelength. The waveguide exploits a one-dimensional photonic crystal (PhC), the periodicity of which is perturbed by an active defective region. The analysis of the gain spectrum, as a function of the geometrical and electrical parameters, has been performed using proprietary codes, based on the bidirectional beam propagation method with method of lines, introducing rate equations to take into account the interaction of the matter with the photons. It is shown that the variations in the number of layers of the one-dimensional PhC, of the injection current, and of the length of the active defect strongly influence the behavior of the gain. A simple example of an active photonic switch is proposed as an application of the outlined design criteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.