Abstract

Gadolinium aluminate (GdAlO3, GAP) is a rare earth compound with perovskite structure. Its optical isotropic structure prevents the defects of refractive index difference in any direction. GAP has unique and excellent properties in electricity, magnetism, luminescence and catalysis, especially as a high-quality luminescent matrix material. Sol-gel method has the advantages of accurate control of chemical composition, particle size and purity of products. The main preparation parameters include chelating agent concentration, alcohol water ratio, calcination temperature and so on. In this paper, the citric acid chelating agent was used to prepare gadolinium aluminate nanoparticles by sol-gel method, thermogravimetry-differential thermal analysis (TG-DTA), x-ray diffraction (XRD) and scanning electron microscope (SEM) were employed to analyze the effects of chelating agent, dispersant, solvent and calcination temperature on the phase and morphology changing in precursor and final product. The results show that GAP nanoparticles with high degree of crystallinity, nearly spherical morphology and 60–100 nm particle size can be obtained at the molar ratio of citric acid to cationic of 1:1, the ammonium citrate to citric acid of 1.5:1 and the calcination temperature of 900 °C for 4 h. When the calcination temperature is higher than 1100 °C, a new phase of Gd3Al5O12 (GdAG) will be formed with calcination neck shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.