Abstract

This manuscript is devoted to establishing some theoretical and numerical results for a nonlinear dynamical system under Caputo fractional order derivative. Further, the said system addresses an infectious disease like COVID-19. The proposed system involves natural death rates of susceptible, infected and recovered classes respectively. By using nonlinear analysis feasible region and boundedness have been established first in this study. Global and Local stability analysis along with basic reproduction number have also addressed by using the next generation matrix method. Upon using the fixed point approach, existence and uniqueness of the approximate solution for the mentioned problem has also investigated. Some stability results of Hyers-Ulam (H-U) type have also discussed. Further for numerical treatment, we have exercised two numerical schemes including modified Euler method (MEM) and nonstandard finite difference (NSFD) method. Further the two numerical schemes have also compared with respect to CPU time. Graphical presentations have been displayed corresponding to different fractional order by using some real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.