Abstract

We designed targeted drug delivery systems containing folate (FOL), the functionalized carbon nanotube (f-CNT) and doxorubicin (DOX), and studied the targeting properties of folate, f-CNT-FOL and DOX/f-CNT-FOL to folate receptor α (FRα). Folate was actively targeted to FRα in molecular dynamics simulations, and the dynamic process, effect of folate receptor evolution, and characteristics were analyzed. On this basis, the f-CNT-FOL and DOX/f-CNT-FOL nano-drug-carrier systems were designed, and the drug delivery process targeted to FRα was studied by 4 times MD simulations. The system evolution and detailed interactions of f-CNT-FOL and DOX/f-CNT-FOL with FRα residues were examined. We found that though the connection of CNT with the FOL could decrease the insertion depth of the pterin of FOL into the pocket of FRα, the loading of drug molecules could reduce this effect. Representative snapshots from the MD simulations were analyzed, showing that the location of DOX on the surface of CNT was constantly changed during the MD simulation, but the surface of the four rings of DOX were almost always parallel to the surface of CNT. The RMSD and RMSF were used to further analyze. The results may provide new insights for the design of novel targeted nano-drug-delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.