Abstract

Aqueous foam flow behavior in a Gas-Liquid Cylindrical Cyclone (GLCC) is studied experimentally and theoretically with the objective of determine the operational envelop for foam break up. An existing experimental two-phase facility was modified to enable foam flow characterization. Several experimental data were acquired for aqueous foam using a compact inlet cyclone. These include: foam characterization in static trap sections, and foam flow behavior in the cyclone. Saint-Jalmes et al. (2000) model has been modified for characterization of foam evolution in static trap sections including the prediction of the drainage interface height with time. In addition, a new model for the prediction of the operational envelop for foam break up in the cyclone based on foam characteristics was developed. Good agreement is observed between the experimental data and the predictions of the models. It can be concluded that depending on the operational conditions the GLCC can act either as a foam breaker or as a foam generator. The developed model for the prediction of the operational envelop for foam break up separates these two modes of operations of the GLCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.