Abstract

Flow field and heat transfer of a nanofluid, whose non-Newtonian behavior has been demonstrated in the laboratory, in a square enclosure have been numerically modeled and investigated. To estimate the viscosity of nanofluid, experimental data of Hong and Kim, 2012 have been used, and a new model has been proposed. Finally, the obtained results have been compared to those of Newtonian behavior. The results obtained by the numerical simulation indicate that the average Nusselt number with non-Newtonian behavior has a value less than the Newtonian behavior. Also for the case in which the nanofluid is non-Newtonian, the buoyancy force is often insignificant, and forced convection dominates. By adding the nanoparticles, the average Nusselt number for the non-Newtonian nanofluid increases, but for the Newtonian nanofluid, depending on the dominant of natural or forced convection in the flow, it decreases or increases, respectively. On the other hand, with increasing the Reynolds number, the heat transfer rate increases for both Newtonian and non-Newtonian fluid at any constant Grashof number, while with increasing of Grashof number at a given temperature difference and a constant Reynolds number, the heat transfer rate increases and decreases in Newtonian and non-Newtonian nanofluids, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.