Abstract
Organic molecular ferroelectrics are highly desirable due to their numerous advantages. In the present work, a thick film of diisopropylammonium bromide organic molecular ferroelectric is fabricated on the ITO/glass substrate. The grown film shows preferential orientation along the c-axis with a ferroelectric transition at 419 K. The piezoresponse force microscopic measurements are done in a dual ac resonance tracking mode for its switching characteristics. The amplitude and phase images of the oppositely written domain patterns exhibit a clear contrast with 180° phase difference. The dynamical spectroscopic studies reveal a butterfly loop in amplitude and hysteretic character of the phase which are the expected characteristics features of ferroelectrics. In addition, the macroscopic polarization versus electric field hysteresis gives an additional proof for ferroelectric character of the film with the maximum polarization of 3.5 μC/cm2. Overall, we have successfully fabricated diisopropylammonium bromide organic films and demonstrated its room temperature ferroelectric characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.