Abstract

Magnetic nanoparticles (MNPs) of Co1 + x Ti x Fe2–2x O4 (0.2 < x < 0.5) ferrite spinel with an average diameter of ~12 nm in a SiO2 shell are obtained by “wet” chemical synthesis and studied by X-ray diffraction, magnetic, and Mossbauer methods. Based on the data on the MNP released heat as a function of the applied external alternating magnetic field (EAMF) strength and frequency, the particle heating mechanisms are studied. The imaginary part of the magnetic susceptibility χ″ identical to the MNP heat release is analyzed at room temperature in an EAMF of strength 1 Oe and a frequency of 100 Hz. The χ″ maximum temperature decreases with increasing Ti content in CoTi spinel. An increase in the temperature by ~10 K was observed in an EAMF of frequency 10 kHz and a strength of 300 Oe. The temperature increase rate ΔT/dt was measured in the range from 0.001 to 0.008 K/s depending on the EAMF frequency and sample composition. It is found that Co1 + x Ti x Fe2–2x O4 MNPs synthesized at 0.2 < x < 0.5 satisfy the requirements imposed on materials used as heat sources during magnetic hyperthermia. Based on measurements of the magnetic susceptibility in an EAMF and Mossbauer studies, it is shown that CoTi ferrite MNPs with a titanium ion content x = 0.3, i.e., Co1.3Ti0.3Fe1.4O4, are most efficient for magnetic hyperthermia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.