Abstract

Recently preparative high-performance liquid chromatography (HPLC) has been used more and more frequently to separate drugs and natural substances. However, large-scale HPLC easily tends to reduce the yield and purity of the product. Hydrodynamic and heat factors play an important roles. Generally, in a large-scale HPLC column, the tracer profile inside column will take on a parabolic shape because of the distributor, which will impact the separation performance of the column. With the inlet temperature suitably lower than the wall temperature, this situation could be improved to some extent. In this work, some experiments were conducted using HPLC, with a column 10 cm in diameter to determine the optimal temperature difference between wall and inlet temperatures. The wall temperature was fixed at about 30 °C and the inlet temperature varied from 15 to 30 °C. The flow-rate of the eluent, methanol, was 300 ml/min. The experimental result was simulated using CFD software fluent 4.4.4. The simulated temperature field fitted the experimental one very well and the simulated flow, temperature and tracer distribution inside column could provide good explanation of separation performance under different conditions. In addition, the simulation could at least approximately predict the optimal temperature difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.