Abstract

PurposeThe purpose of this current study is to identify the optimal stable position of airship, with reference to spatial variation of atmospheric wind flow, so as to reduce the vibrations and thus aid in the development of control mechanism of airship dynamics.Design/methodology/approachStudy of uniform flow under steady‐state conditions was carried out through the measurements of pressure and velocity in a wind tunnel at low Mach numbers on airship model (in order of size, 1:13) inclined to the uniform air stream at various angles. The measurements have been made for a range of angles of incidence, in both vertical and horizontal planes, with a Reynolds number, based on the free stream velocity and a body cross‐sectional dimension, of order of four and six, respectively. Steady‐state numerical simulations were performed, serving comparative investigation with experimental data for the specific case of the model inclined to the free stream, with orientation of side‐slip (yaw) angle β=0 and angle of attack (pitch) α=0.FindingsThe numerical results showed similar trend as found by experimental analysis. In this study, several factors such as the pressure (Cp), lift (CL), drag (CD) coefficients, pressure and air velocity were taken into account for comparative analysis. The analysis paved the way in identification of constructively stable position of airship model with orientation of β=0 and α=0, with respect to air flow direction.Practical implicationsThe current findings aid in the development of control mechanism of airship dynamics.Originality/valueThe experimental analysis of the airship model is presented along with computational fluid dynamics analysis of optimised shape of airship model in different orientations with respect to direction of airflow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.