Abstract

Excited states of furan and pyrrole were studied by time-dependent density functional theory. The effect of basis set and density functional on the vertical excitation energies was investigated. Energy gradients and dipole moments were evaluated analytically. Stationary points on the lowest excited states were determined. Harmonic frequencies and ( v ′=0← v=0) excitation energies were evaluated. Many of the results agree well with the experimental values available as well as most recent theoretical ab initio values, but there remain discrepancies in the valence states. The dipole moments of many excited states show a large variation with the basis set and functional; this is due to the fact that the states have an extremely large polarisability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.