Abstract

This paper studies the rescheduling problem of a single machine facing unexpected disruptions in order to determine which parameters can help reducing the negative impacts of these disruptions on schedule performance. A Genetic Algorithm (GA) is used to generate the initial schedule and the updated ones according to a reactive strategy. The performance of event-driven rescheduling and periodic rescheduling policies are compared in terms of total tardiness and total cost of rescheduling. Other factors that may affect rescheduling such as disruption time, disruption duration and number of disruptions are investigated. The sensitivity of results to both due date tightness and cost factor variation is tested. The results showed that the timing of the occurrence of disruption as related to scheduling horizon has a major effect on determining the best rescheduling policy. Event-driven policy is superior to other policies for short infrequent disruptions. It was found that the periodic policy is more appropriate for long and frequent disruptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.