Abstract

The lack of understanding about the brain's reaction processes in perceiving touch and separation between skin and object surfaces is a barrier to the development of existing brain-computer interface technologies and virtual haptics. These technologies are limited in their ability to advance. It leaves prosthesis users with a limited amount of tactile information that they can feel. This study aims to determine whether distinct surface aspects of various items trigger different reactions from the brain when friction is removed from the surface. When friction is suddenly removed from the surface of an item, a technique called event-related potential, (ERP) is used to study the features of people's EEGs. It is done after the subject has actively explored the object's surface. A 64-channels EEG collecting system was utilized to acquire EEG data from the individuals. [Corrections added on 5 December 2022, after first online publication: The preceding sentence has been updated.] The event-related potentials for friction removal were generated using the Oddball paradigm, and the samples consisted of sandpaper with three distinct degrees of roughness. We utilized a total of 20 participants, 10 of whom were male, and 10 of whom were female, with a mean age of 21 years. It was discovered that the P3 component of event-related potentials, which is essential for cognition, was noticeably absent in the friction withdrawal response for various roughnesses. It was the case regardless of whether the surface was smooth or rough. Moreover, there was no statistically significant difference between the P1 andP2 components, which suggests that the brain could not recognize the surface properties of objects with varying roughness as the friction withdrawal was being performed. It has been demonstrated that tactile recognition does not occur after friction withdrawal. The findings of this paper could have significant repercussions for future research involving the study of haptic perception and brain-computer interaction in prosthetic hands. It is a step toward future research on the mechanisms underlying human tactile perception, so think of it as preparation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.