Abstract

The physical state of benzoic acid (BA) and its interaction with ethyl cellulose (EC) were examined in ethyl cellulose—benzoic acid matrices by Differential Scanning Calorimetry (DSC). The glass transition temperature (Tg) of EC of various matrices having BA in solid solution form (upto 27.7%) was reduced. The BA in matrices containing more than 38.9% drug exhibited distinct melting endotherms due to crystalline form. The peak temperatures of these endotherms were lowered and they broadened as the concentration was lowered. The solubility of BA increased at its melting point as compared to ambient temperature. The melting enthalpy of BA, when plotted as a function of its concentration yielded a straight line with intercept of 330 mg g−1 of matrix. This is the solubility of BA in EC at its melting temperature. Fourier Transform Infra Red Spectroscopy (FTIR) investigations confirmed that hydrogen bonding occurred between EC and BA through hydroxyl groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.