Abstract

The erosion–corrosion (EC) and pure erosion of commercially pure titanium have been investigated in a 3.5% sodium chloride solution containing 10, 30, and 60 g/l SiO2 particles with an average size of 318 μm. The tests were performed at impact velocities of 4, 6, and 9 m/s under two impact angles of 40 deg and 90 deg. Polarization technique was used to study corrosion behavior of the material during erosion–corrosion. The eroded surfaces were examined by a scanning electron microscope (SEM) and a surface profilometer. The pure erosion, corrosion, and erosion–corrosion rates increased as impact velocity and sand concentration increased. The corrosion rates of the eroding surfaces under a normal impact were lower than those at an impact angle of 40 deg. The S/T ratio, i.e., the ratio of synergy to erosion–corrosion rates was about 80% at an impact velocity of 4 m/s, which indicated the high effect of the electrochemical corrosion on the degradation of CP-Ti at low velocity. The S/T ratio decreased to 30% and 15% at the impact velocities of 6 and 9 m/s, respectively. The S/T ratio was also decreased with increasing sand concentration indicating a greater role of mechanical degradation upon the erosion–corrosion rate in the concentrated slurries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call