Abstract

The electron paramagnetic resonance (EPR) parameters (g-factors g‖, g⊥ and zero-field splitting D) of two tetragonal 3d3 impurity centers M3d-VMg and M3d-Li+ (where M3d = Cr3+ or Mn4+, VMg is the Mg2+ vacancy) in M3d-doped MgO crystals are calculated from the high-order perturbation formulas including both the crystal-field (CF) and the charge-transfer (CT) mechanisms for 3d3 ions in the tetragonal symmetry. The calculated results are in reasonable agreement with the experimental values. From the calculations, it can be found that the relative importance of the CT mechanism for EPR parameters increases with increasing valence state of the 3d3 ion. So, for the high-valence 3dn ions in crystals, a reasonable explanation of EPR parameters should take into account both CF and CT mechanisms. The defect structures (characterized by the displacement ΔR of O2− in the intervening M3d and VMg or Li+ at the Mg2+ site) for these tetragonal impurity centers are obtained from the calculations. The results are consistent with the expectations based on the electrostatic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call