Abstract

Enzymatic degradation of poly(3-hydroxybutyrate- co-3-hydroxyalkanoates) (PHBA) biopolyester consisting of 3-hydroxybutyrate (HB) and 15 mol% medium-chain-length 3-hydroxyalkanoates (HA) was studied using a polyhydroxyalkanoates (PHA) depolymerase produced by Ralstonia pickettii T1. It was found that PHBA films did not lose their weight after 25 h of depolymerase treatment. In contrast, three commercially available PHAs including poly-3-hydroxybutyrate (PHB), poly(3-hydroxybutyrate–19 mol% 3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate–19 mol% 3-hydroxyhexanoate) (PHBHHx) lost 75%, 94% and 39% of their original weights. Slow degradation of PHBA was also confirmed by the absence of HA monomers, dimers or trimers as degradation products in their depolymerase solution compared with abundance of degradation products released by the other three PHAs under the same condition. Surface erosion of PHBA was only observed after 48 h of enzymatic treatment compared with those of PHB, PHBV and PHBHHx which already had obvious surface changes after 7.5 h of same treatment. Although the crystallinities of PHB, PHBV, PHBHHx and PHBA were in the order PHB > PHBV > PHBHHx > PHBA valued at 55.8%, 47.8%, 45.9% and 40.9%, respectively, the order of degradability was PHBV > PHB > PHBHHx > PHBA. It can be proposed that PHA enzymatic degradation using this depolymerase was structure related: longer side-chain PHA including PHBHHx and PHBA was less favorable for the depolymerase degradation, longer the side chain, less the biodegradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.