Abstract

In this work, TiB2 particulate reinforced copper matrix composites were fabricated by casting method, based on in situ precipitation reaction between B and Ti elements to form TiB2 particles in molten copper. The microstructures of the Cu-TiB2 composites were characterized using SEM and TEM. The results show that TiB2 particles are successfully formed in the copper matrix and the interfaces between these particles and the matrix are clean and well bonded. The friction and wear characteristics of the Cu-TiB2 composites were determined by carrying out dry sliding tests on pin-on-disk machine under varying loads, sliding speeds and sliding distances. A comparison between the volume wear losses of the composites under different conditions shows a significant improvement in wear property of the composites with respect to the pure copper. Furthermore, the mechanical properties of the composites with different TiB2 levels were also investigated. Both tensile strength and hardness are significantly improved with the increasing amount of TiB2 in copper matrix, while compromises of the elongation and electrical conductivity nevertheless occur in all cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.