Abstract
This paper reports an experimental and computational study on the energetics of 1,2,3-benzotriazin-4(3H)-one. The standard (p° = 0.1 MPa) molar enthalpy of formation of solid 1,2,3-benzotriazin-4(3H)-one, at T = 298.15 K, was derived from its standard massic energy of combustion measured by static bomb combustion calorimetry in oxygen. The Calvet high-temperature vacuum sublimation technique was used to measure the respective standard molar enthalpy of sublimation at T = 298.15 K. From these two experimentally determined thermodynamic parameters, we have calculated the standard molar enthalpy of formation of 1,2,3-benzotriazin-4(3H)-one in the gas phase at T = 298.15 K, (200.9 ± 3.8) kJ·mol(-1). Interrelations between structure and energy for 1,2,3-benzotriazin-4(3H)-one, the tautomer 1,2,3-benzotriazin-4(1H)-one, and the enol tautomer 1,2,3-benzotriazin-4-ol were discussed based on density functional theory (DFT) calculations with the B3LYP hybrid functional and the 6-311++G(d,p) basis set. The gas-phase enthalpy of formation of 1,2,3-benzotriazin-4(3H)-one was estimated from quantum chemical calculations using the G3(MP2)//B3LYP composite method. Nucleus-independent chemical shifts (NICS) were also calculated with the purpose of analyzing the aromaticity of the benzenic and heterocyclic rings of the title molecule and others related tautomerically to it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.