Abstract

ABSTRACTDensity functional theory (DFT)/time dependent density functional theory (TDDFT) based calculations were performed for basis sets 6-31G for DFT and 6-31G (d), 6-31G (d,p) and 6-31+G (d,p) for TDDFT calculations on pure boron nitride nanoribbon (BNNR) B15N15H14 and metal decorated B15N14H14-X BNNRs, where X = Ni+, Fe+, Co, Cr+, Cu and Al. The metal doping ratio = 3.45% and the doping site (nitrogen atom), were fixed for all the BNNRs. Electronic properties dipole moment, binding energy and bandgap were determined. Absorption properties in the wavelength range (100–600 nm) were studied, and optical gaps, absorption wavelengths, oscillator strengths and dominant transitions were calculated. The effect of metal doping on the electronic and optical properties was investigated. Single metal doping shifts the electronic gap of pure BNNR from insulating to semiconducting nature. Red shift in the absorption wavelengths from ultraviolet to visible in all the BNNRs was noticed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call