Abstract

The use of plasma emission cathode in the conjunction with a multiple apertured electron optical system (EOS) is promising for the multi-MW class electron beams of a large cross-sectional area. In a multi-aperture source, the beam parameters could be raised simply due to increase of the number of apertures (i.e. an effective emission area), if a uniformity of the electron emission over a large-area plasma cathode is ensured. In the presented paper, the cross-sectional distribution of the emission current density was investigated using the X-ray diagnostic technique for two versions of the diode-type EOS, with electrodes performed as flat molybdenum “grids”. The first one had 241 apertures arranged hexagonally inside a circle with a diameter of 8.3 cm and the second had 499 apertures within a circle of 11.8cm diameter. The emission plasma is produced using a single arc-discharge plasma generator placed on the axis at 20 cm from the EOS. It was demonstrated that multi-aperture systems with a single on-axis plasma generator can be effectively employed to obtain large-area beams, even in the presence of the guiding magnetic field. All apertures are emitting in the 499-apertured EOS. The beam current density is quite uniform up to the radius 2.5cm and gradually decreases to the periphery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call