Abstract

This paper presents a numerical investigation of electromagnetic scattering from ship-generated internal wave wake and its underlying two-dimensional sea surfaces. The geometric modeling of internal wave wake and linear sea surfaces as well as nonlinear choppy wave model (CWM) sea surfaces are performed successively. Then, the normalized radar cross-section (NRCS) calculations are carried out using second-order small-slope approximation (SSA-2) in bistatic and monostatic configurations. To study the scattering characteristics of internal wave wakes that usually have a large coverage area, the calculations are performed in four successive regions. The results reflect that the scattering signals of four regions are distinguished from those of sea surface without wake; furthermore, the NRCSs for CWM sea surfaces with internal wave wakes are both larger than those of the linear sea surfaces with internal wave wakes in bistatic and monostatic configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.