Abstract

Temperature and frequency dependence of a.c. conductivity have been studied in glassy Se100- x Te x(x = 10, 20 and 30) over different range of temperatures and frequencies. An agreement between experimental and theoretical results suggests that the a.c. conductivity behaviour of selenium-tellurium system (Se100- xTex)can be successfully explained by correlated barrier hopping (CBH) model. The density of defect states has been determined using this model for all the glassy alloys. The results show that bipolaron hopping dominates over single-polaron hopping in this glassy system. This is explained in terms of lower values of the maximum barrier height for single-polaron hopping. The values of density of charged defect states increase with increase in Te concentration. This is in agreement with our previous results obtained from SCLC measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call