Abstract
This paper discusses the electrical and mechanical characterization of an inkjet-printed patch antenna under uniaxial and biaxial bending. A 30 mm × 40 mm patch antenna design with a truncated copper ground plane was designed and fabricated by inkjet printing on a polyethylene terephthalate (PET) substrate. The fabricated antenna samples were then fixtured on cylindrical polycarbonate mandrels as well as on 3D printed saddle-like structures using polylactic acid (PLA). S11 was measured in both bent and flat configurations, and a shift in resonant frequency was observed. A maximum decrease of about 12.6% in resonant frequency under cylindrical bending was observed, and this decrease can be attributed to the decrease in conductance in the printed components due to small radius of some of the mandrels and due to sequential repetitive bending. The change in resonant frequency under biaxial saddle-like bending was small due to larger radii of the saddle-like surfaces and due to one-time bending. Electrical simulations in ANSYSTM HFSS were carried out to determine S11 of the patch antenna under flat configuration and was compared favorably against experimental data. Mechanical finite-element models in ANSYSTM Workbench were carried out to determine the strain distribution under both uniaxial and biaxial bending. A maximum strain of 0.0169 under uniaxial bending and 0.0029 under biaxial bending was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.