Abstract

Due to high gas content, high geo-stress and complex geological conditions, gas disasters occur frequently in deep coal mining. The hard thick roof (HTR) greatly increases the difficulty of coalbed gas control besides causing dynamic disasters. In this paper, the effects of HTR on gas migration were numerically analyzed based on a multi-field coupling model. Results indicated that the hanging arch leads to remarkable stress concentration and induces a “cap-shaped” low-permeable zone above the gob, which greatly prevents gas from migrating upwards. Meanwhile, HTR hinders the subsidence movements of the upper rock strata, contributing to very few roof fractures and bed-separated fractures. Without the formation of roof-fractured zone, coalbed gas completely loses the possibility of upward concentration and will accumulate in the gob, forming a major safety hazard. To overcome these problems, borehole artificially guided pre-splitting (BAGP) technology was proposed. Three different pre-splitting boreholes were constructed as a group to generate artificial fractures in advance in HTR via deep-hole blasting, promoting the evolution of roof fractures. With the effects of mining stress, a fracture network is eventually formed in HTR, which provides a preferential passage for the upward flow of coalbed gas. Moreover, the controllable breaking of HTR was achieved and the roof strata could deform and subside regularly, forming an “O-shaped” roof-fractured zone above the gob which greatly improves the gas extraction efficiency of roof high-level boreholes. In addition, after BAGP, several extraction measures can be applied in the gob-side entry to drain the gas in different concentrated areas. In the field experiment, the roof periodic breaking length was reduced by half, and the average gas extraction rate was increased by 4 times to 67.7%. The synergetic controls of HTR and coalbed gas were effectively realized. This study provides valuable insight into gas control in other deep coal mines with similar geological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call