Abstract

Springback remains a major concern in sheet metal bending in fabricating any final product within the permissible tolerance. Apart from the geometrical and material parameters, springback is significantly affected by the forming load also and the present study is focused on it. Sheet metal bending process involves large rotation and strain as well as large springback due to elastic recovery of the material. Therefore, a large deformation algorithm based Finite Element software was used to model a typical sheet metal bending process employed in manufacturing cylindrical structures. A Total-Elastic-Incremental-Plastic (TEIP) algorithm has been incorporated in an in-house software to handle large deformation and the elastic recovery during the unloading process. In addition, experiments have been performed on aluminum, brass, copper and mild steel sheets and substantiated with the FEM analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.