Abstract
ABSTRACTAn experimental investigation was carried out to determine the effect of binders and loading pressures on burning performance of B/BaCrO4 and Si/PbO/Pb3O4 delay compositions. The consolidated density and percent theoretical maximum density (%TMD) of these compositions were also studied with different binders and at multiple loading pressures. Carboxyl methyl cellulose (CMC), dextrin, and fish glue with varying wt. % were used as binders. It was observed that the burning rate of these delay compositions was inversely proportional to the binder content. The burning rate of B/BaCrO4 delay composition was 71.0 mm/s without binder. The burning rate decreased to 38.1 mm/s by adding 3.0 % fish glue. When 1.0 % CMC was added to the mixture, the burning rate decreased to 61.8 mm/s. By adding 3.0 % dextrin to the delay composition, the burning rate decreased to 38.2 mm/s. The burning rate of Si/PbO/Pb3O4 delay mixture was 38.6 mm/s without binder. The burning of this mixture decreased to 16.4 mm/s by adding 1.0 % fish glue. The loading pressures were varied from 103 to 414 MPa. The effect of loading pressures on the burning rate of both the delay compositions was marginal. The burning rate of B/BaCrO4 delay mixture decreased with the increase in loading pressure. On contrary, the change in burning rate of Si/PbO/Pb3O4 pyrotechnic delay composition was minimal by varying the loading pressures. Results also revealed that loading pressures of 345 and 348 MPa produced the minimum standard deviation in burning rate of B/BaCrO4 and Si/PbO/Pb3O4 compositions. The consolidated density and %TMD of both mixtures increased by adding binders and increasing the loading pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.