Abstract

1060-H112 aluminum alloy with high ductility is widely used in industrial engineering. The study of its dynamic mechanical behavior has theoretical and engineering application value. In this paper, quasi-static tensile tests from room temperature to 250°C and high strain rate compression tests were conducted using a universal material testing machine and a Hopkinson compression bar. By using a hybrid test-numerical simulation method, a modified Johnson-Cook (MJC) strength model and Cockcroft-Latham (C-L) fracture criterion parameters were calibrated. Subsequently, Taylor impact tests were performed on 1060-H112 aluminum alloy specimens with a diameter of 12.66 mm and a length of 50.64 mm in the range of 176.3–483.03 m/s. Upsetting and tensile tearing were observed in the tests. A 12.68 mm diameter blunt nosed projectile impact test on 2 mm 1060-H112 aluminum alloy plate was also conducted with a light gas gun system, and the speed related parameters and failure modes were obtained. Finally, a three-dimensional model corresponding to the test was established in ABAQUS/Explicit finite element simulation software, and the failure modes of the Taylor rod and the velocity parameters and failure modes of the target impact test were predicted. The results show that the MJC strength model and the C-L fracture criterion can predict the experimental results of the two tests accurately. It shows that the MJC strength model and C-L fracture criterion have high accuracy, and they will play an important role in the application of 1060-H112 aluminum alloy in industrial engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call