Abstract

The use of steel flexible barriers to mitigate landslide risk on natural hillsides is becoming common in the past decade in Hong Kong. The current design approach for this kind of barrier structure involves the adoption of the hydrodynamic load model to predict dynamic impact forces, followed by non-linear structural analyses of flexible barriers using numerical programs based on the pseudo-static force method. From local design guidelines, the dynamic pressure coefficient, a critical input parameter in the hydrodynamic load model, is taken as 2.0. This empirically considers the effect of impacts from boulders up to 2.0 m in diameter. With a view to rationalising the design approach, a series of physical impact tests and numerical analyses was conducted to investigate the dynamic debris impact on flexible barriers and the resulting barrier response. The physical impact tests involved up to 9 m3 of debris resisted by a 1.5 m high steel ring-net barrier. The tests were conducted in the 28 m long large-scale flume facility at the Kadoorie Centre in Hong Kong. Numerical modelling using computer programs LS-DYNA and NIDA-MNN was conducted to analyse the dynamic response of flexible barriers with different structural forms. The study aims to evaluate the dynamic pressure coefficient and to verify the current design approach based on the suggested dynamic pressure coefficient from this study. Results indicate that a dynamic pressure coefficient of 1.0 is, in general, appropriate for design purposes if the debris comprises primarily water and fine-grained particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.