Abstract
Fluorescence correlation spectroscopy (FCS) has been used to study translational diffusion of three fluorescent dyes in a micelle and a gel. It was demonstrated that a highly hydrophobic dye, DCM, remains confined to a particular micelle during the passage of the micellar aggregation through the confocal volume. As a result, DCM exhibits slow diffusion of the large micellar aggregate with a diffusion coefficient (D(t)) approximately 25 times slower compared with that of water. In contrast, a hydrophilic probe (C343 or C480) occasionally diffuses out of the micelle into bulk water and displays a large D(t) (twofold smaller in F127 and approximately six times smaller in the P123 micelle compared with that in bulk water). In a gel, diffusion of the individual micelles is completely arrested and hence, the autocorrelation in FCS arises solely from the diffusion of the dye in the gel. In this case, all the three dyes exhibit extremely slow diffusion (300, 45, and 20 times slower than that in water for DCM, C480, and C343 in F127 gel, respectively). In a P123 and F127 gel, diffusion of DCM is respectively, seven and 29 times slower compared with that of the ionic probe C343. The relatively small value of red-edge excitation shift (REES) of the emission maximum, suggests that DCM is confined within the core of the triblock copolymer micelles and gels. The hydrophilic probes (C343 or C480) exhibit fast diffusion in the micelles and gels. However, their REES is very different. The large REES of C480 suggests that it is distributed over a large region of the micelle, whereas the low REES of C343 indicates that it is located primarily in the peripheral corona region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.