Abstract

ZEP brand electron beam resists are well-known for their high sensitivity and etch durability. The various performance metrics such as sensitivity, contrast, and resolution of ZEP resist depend strongly on the development process. In this work, we investigate the development of ZEP-520 resist through contrast curves, dense gratings, and surface roughness measurements using three different classes of developer systems of varying solvation strength, ZED-N50, methyl isobutyl ketone (MIBK) : isopropyl alcohol (IPA) 1:3, and IPA : H2O 7:3, at the ambient temperature (22 °C) and cold (-15 °C) development conditions. In order to provide a deeper insight into the ZEP development process, we propose a novel kinetic model of dissolution for ZEP, and develop an efficient analytical method that allows determining the microscopic parameters of ZEP dissolution based on experimental contrast curves. We also observe experimentally and characterize the negative tone behavior of ZEP for dense grating patterning and compare its performance with positive tone behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.