Abstract

Recently, organic-inorganic perovskite-based solar cells have become a revolution in photovoltaic field due to their unique properties. Several studies were focused on perovskite solar cells based on Pb perovskite layer as lead provides strong absorption of photons and have high efficiency. However, the factor of toxicity, stability and ecological challenges of these devices is the main challenge to the progress in commercial production. In this, study and numerical modeling of perovskite solar cells using an alternative candidate which is tin as a perovskite material has been carried out. This later is investigated in order to overcome the toxicity, stability and ecological challenges effects on perovskite solar cells, as they exhibit similar photovoltaic performances as Pb-perovskite solar cells. Therefore, the effect of single and double absorbent i.e. CH3NH3SnI3 and CH3NH3SnBr3 and no Hole Transport Layer is studied and investigated to enhance the conversion efficiency of perovskite devices. The obtained simulation results illustrate that perovskite solar cells based on no HTL and double absorbent layer exhibit 21.3% of power conversion efficiency compared to that with other HTL materials. Thus, adding double absorbent layer in perovskite solar cell design possibly will be considered as novel designing for future Sn-perovskite solar cells. The numerical simulation was performed using 1DSolar Cell Capacitance Simulator (1D- SCAPS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.