Abstract

Abstract This work reports the preparation of Cu-Zn and Au/TiO2 catalysts on anodized aluminum monoliths (AAM). The structured catalysts were studied for the generation of H2 by methanol steam reforming (MSR) and its purification by preferential oxidation of CO (CO-PrOx). Initially, it was possible to generate a surface with whiskers and larger surface area by hydrothermal treatment of the AAM. Subsequently, the structured catalysts were synthesized by incipient wetness impregnation (IWI) and hydrothermal synthesis (HS). IWI synthesis allowed for the deposition of a larger amount of catalytic material than HS, with very good adhesion. The TiO2-IWI structured catalyst presented a homogeneous catalytic coating, with the presence of agglomerated particles. On the other hand, Cu-Zn-IWI showed good dispersion of the deposited particles with a homogeneous surface coating. EDX analysis corroborated the presence of Ti, Cu and Zn in all the catalytic surfaces. The incorporation of Au over TiO2-IWI structured catalysts was successfully performed by IWI using a colloidal solution of gold nanoparticles. MSR was studied over the developed metallic monoliths functionalized with Cu-Zn by the IWI method. The samples showed promising results in terms of activity, selectivity, and stability. Both diluted and concentrated methanol + water feeds were assayed. Complete methanol conversion was achieved for the diluted feed. Maximum methanol conversions of 55 % with 60 % H2 yield were measured when the concentrated feed was selected. Promising results were also achieved for the Au-based structured catalysts in the CO-PrOx in an H2-rich atmosphere. Although CO conversions of approximately 60 % were achieved, operating with higher catalyst loadings would be recommended to reach the high CO conversions required for PrOx catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.