Abstract
Amorphous fluoride glass is used as the reaction chamber (i.e., solid cell) to grow Ba2LaF7 (BLF) nanocrystals at elevation temperatures (i.e., 300-500 °C) so that in situ real-time crystallization and coalescence of BLF nanocrystals can be observed. Due to the inherent advantages of the liquid-like solid medium, high temporal and spatial resolution transmission electron microscopy images can be obtained. Hence, we reveal that the twinned and quadruplet BLF nanocrystals are formed at low temperature (≤430 °C) and the unification of two nanocrystals via the two pathways (i.e., migration with and without rotation) to a single defect-free BLF nanocrystal is favored at high temperature (≥470 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.