Abstract

The smoke back-layering length and the critical ventilation velocity in double fire scenarios where the fire sources were both inside and outside the tunnel were studied by small-scale tests and theoretical analysis. Results showed that the smoke back-layering length increased with an increase of the fire separating distance when the dimensionless fire separating distance was less than 3, and the values were larger than the results of a single internal fire at each fire separating distance. The dimensionless critical ventilation velocity segmentally increased with the increase of the dimensionless fire separating distance when the dimensionless fire separating distance was less than 10, and then remained constant. Moreover, the constant value was found to be close to that in the case of a single tunnel fire. In addition, an empirical model of dimensionless critical ventilation velocity was established for the double tunnel fire scenario both inside and outside a tunnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.