Abstract

Creep crack growth (CCG) has been investigated in an 8009 (Al-Fe-V-S) P/M alloy at 175 °, 250 °, and 316 ° and in a 2618 ingot alloy at 150 °, 175 °, and 200 °. Under sustained load, subcritical crack growth is observed at stress intensity levels lower thanKic; for 2618, at 200 °, crack growth is observed at stress intensities more than 40 pct lower thanKic. Alloys 8009 and 2618 exhibit creep brittle behavior,i.e., very limited creep deformation, during CCG. The CCG rates do not correlate with CCG parameters C* and C but correlate with the stress intensity factor,K, and theJ integral. Generally, crack growth rates increase with increasing temperature. Micromechanisms of CCG have been studied with regard to microstructural deg-radation, environmental attack, and creep damage. Although theoretical estimation indicates that CCG resistance decreases with second-phase coarsening, such coarsening has not been observed at the crack tip. Also, no evidence is found for hydrogen- or oxygen-induced crack growth in comparing test results in moist air and in vacuum. Creep deformation and cavitation ahead of crack tip are responsible for observed time-dependent crack growth. Based on the cavitation damage in the elastic field, a micromechanical model is proposed which semiquantitatively explains the correlations between the creep crack growth rate and stress intensity factor,K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.