Abstract

The model of coupled exhaust hood with condenser throat and the model of coupled exhaust hood, condenser throat with last stage were simulated based on the turbulence model Realizable k-ε. Calculated results show that due to the ignoring of the inlet swirl in the model coupled exhaust hood with condenser throat, the flow field is symmetrical and the pressure loss is small. Due to the influence of last stage, in the model of coupled exhaust hood, condenser throat with last stage, the flow field of the inlet of the exhaust hood is uneven, and the vortexes changed more complex, resulting in the increase of the pressure loss of each part and a greater influence in the diffuser pipe. The proportion of pressure loss of diffuser pipe in total pressure loss increases from 0.086 to 0.358, and there is a 70% decline of proportion of pressure loss in volute and condenser throat. In addition, the proportion of the pressure loss in volute is the largest one in these two coupled models. So more attention should be paid in the influence of the last stage, and weaken the vortexes in the volute when designing or optimizing the exhaust passage of steam turbine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.