Abstract
Studying the interaction between molecules and surface plasmon polaritons (SPPs) is of great important in understanding surface-enhanced Raman scattering (SERS). While it is known that SERS consists of excitation and emission enhancements, each of them is manifested by several sub-steps which individually also deserve attention. For example, for emission enhancement, the energy from the excited molecules is first coupled to SPPs, which then radiatively scatter to far-field. To understand these two sequential processes completely, differentiating them one by one is necessary. Here, we decouple them and determine the coupling efficiency of molecules to SPPs by using a phenomenological rate equation model. We find the coupling efficiency, defined as the ratio of the coupling rate from molecules to SPPs to the direct Raman decay rate, can be expressed as the SERS intensity ratio and the SPP absorption and radiative decay rates, which all can be determined by polarization- and angle-dependent Raman and reflectivity spectroscopy. As a demonstration, the coupling efficiencies of 6-mercaptopurine to SPPs propagating in Γ-X direction on Ag nanohole array are measured for several Raman emission wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.