Abstract

The coupled double diffusive natural convection and radiation in a tilted and differentially heated square cavity containing a non-gray air-CO2 (or air-H2O) mixtures was numerically investigated. The horizontal walls are insulated and impermeable and the vertical walls are maintained at different temperatures and concentrations. The hybrid lattice Boltzmann method with the multiple-relaxation time model is used to compute the hydrodynamics and the finite difference method to determine temperatures and concentrations. The discrete ordinates method combined to the spectral line-based weighted sum of gray gases model is used to compute the radiative term and its spectral aspect. The effects of the inclination angle on the flow, thermal and concentration fields are analyzed for both aiding and opposing cases. It was found that radiation gas modifies the structure of the velocity and thermal fields by generating inclined stratifications and promoting the instabilities in opposing flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.